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Summary

 

1.

 

Resource selection functions (RSF) have contributed to the conservation of species negatively
affected by human activities. Despite these applications, two assumptions frequent many studies:
the assumption of independence among groups in social species, and that selection is proportional
to resource availability. This latter case is known as a functional response in resource selection, and
may be especially important in human–wildlife relationships where there is a fitness cost of proximity
to humans.

 

2.

 

Recent advances in generalized linear mixed models offer new ways to account for resource
selection in social species and functional responses by accommodating correlations within hierarchical
groups with random intercepts, and functional responses with random coefficients.

 

3.

 

We illustrate the application of mixed-effects RSF models using a case study of resource selection
by individual wolves 

 

Canis lupus

 

 living in packs as a function of human activity.

 

4.

 

In areas of low human activity, wolf  resource selection was independent of proximity to humans.
As human activity increased, wolves displayed a functional response selecting areas closer to human
activity. With increasing human activity, however, wolves displayed spatio-temporal avoidance of
human activity during daylight. This could lead to behaviourally induced trophic cascades mediated
by wolf avoidance of human activity, and fits within the framework of attractive sink habitats.

 

5.

 

Accounting for the hierarchical social structure of wolves clearly showed that the response of
wolves to human disturbance was strongly correlated, but different, within packs, and that the
correlation was strongest during winter and weakest during summer.

 

6.

 

Syntheses and applications

 

. Failure to consider the social structure of wolves and the functional
response to human activity would result in mistaken conclusions about wolf–human relationships.
Our approach provides a unifying framework to understand the contradictory results of previous
studies of wolf–human relationships and a template for future studies to evaluate effects of increas-
ing human activity on wildlife.
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Introduction

 

Increasing human activity poses a significant threat to wild-
life conservation through direct human-caused mortality or
indirect causes such as habitat fragmentation and avoidance
of human activity (Sinclair & Byrom 2006). The importance
of  the indirect avoidance of  human activity by wildlife is
often underappreciated. Wildlife species must make trade-offs

between selecting habitats that offer forage resources or
avoiding predation risk and/or human activity (Gill, Sutherland
& Watkinson 1996; Gill & Sutherland 2000) where human
activity is associated with increased mortality (Frid & Dill
2002). Avoidance of areas because of human activity can
often have demographically costly consequences (Johnson

 

et al

 

. 2004; McLoughlin, Dunford & Boutin 2005). While
advances in the study of resource selection have provided new
tools to understand wildlife–human relationships (Boyce
& McDonald 1999), a persistent difficulty remains unsolved
– how to accommodate wildlife responses to gradients in
human activity (Mysterud & Ims 1998; Beale & Monaghan
2004). Moreover, many species are social, and responses of
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group-living species to human activity are likely to be cor-
related within groups, another oft-overlooked problem in
wildlife–human relationships. Providing a new statistical
approach to remedy these problems for a carnivore species
of broad conservation concern is the goal of this study.

Ecologists often examine wildlife–human relationships
using resource selection studies to provide guidelines for
conservation (Mladenoff 

 

et al

 

. 1995; Carroll, Noss & Paquet
2001; Johnson 

 

et al

 

. 2005). Resource selection is usually
evaluated by comparing habitats that are used with those that
are unused or available using a variety of methods including
compositional analysis (Aebischer, Robertson & Kenward
1993), discrete choice models (Cooper & Millspaugh 1999),
or the more flexible suite of  models known as resource
selection functions (RSF) based on logistic regression-based
approaches (RSF; Boyce & McDonald 1999; Manly 

 

et al

 

.
2002). Statistical advances in RSF models especially have
overcome earlier methodological deficiencies (Garshelis
2000) by accommodating categorical and continuous covariates,
nonlinear functions, autocorrelation (Nielsen 

 

et al

 

. 2002),
and flexible definitions of availability (Compton, Rhymer &
McCollough 2002) in multiscale designs that reflect the
hierarchical process of habitat selection (Johnson 1980).

There are two difficult-to-remedy RSF model assumptions
that remain especially important to wildlife–human relation-
ships. First, few studies acknowledge that resource selection
may be more similar among individuals in social groups (e.g.
herds) or with geographic areas (e.g. watersheds). Second,
previous studies of wildlife–human relationships often
assumed a constant response of wildlife to human activity
(Mladenoff

 

 et al

 

. 1995; Carroll 

 

et al

 

. 2001; Johnson 

 

et al

 

. 2005).
This implicitly assumes that use of a habitat is proportional to
the amount of  that habitat available – namely that selection
is a constant function of availability (Mysterud & Ims 1998).
For example, Mysterud & Ims (1998) showed that grey
squirrels 

 

Sciurus carolinensis

 

 only selected croplands when
they constituted less than 10% of available habitats. They then
developed a simple method to model functional responses in a
simple two-habitat system that was applied in studies of polar
bears 

 

Ursus maritimus

 

 and moose 

 

Alces alces

 

 (Mauritzen

 

et al

 

. 2003; Osko 

 

et al

 

. 2004). Unfortunately, the approach of
Mysterud & Ims (1998) cannot be used where there are more
than two categorical habitat types, with continuous covariates,
in the presence of interactions, or in logistic regression-based
RSF designs. Their approach also assumed independence
between observations between individual animals or groups.
Despite these methodological difficulties, functional responses
are expected to be especially important when there is a trade-
off  in selection for a particular resource, such as where human
activity imposes increased risk of mortality (Mysterud & Ims
1998; Frid & Dill 2002). Applied ecologists need more flexible
statistical approaches to model functional responses in
resource selection, especially for wildlife–human relationships.

Consider the general case when the availability of a habitat
covariate in an animal’s home range varies such that selection
for that covariate varies among individuals, and individuals
occur in correlated groups. One class of statistical models that

has been developed to accommodate hierarchically structured
responses is that of random effects models (Breslow & Clayton
1993). Recent advances in generalized linear mixed models
(GLMMs; mixed because they contain random and fixed
effects) can accommodate variable availability and selection
within logit models (Skrondal & Rabe-Hesketh 2004) and
hierarchically structured data, such as observations within
individuals within groups. While the use of random effects
models is growing in ecology (e.g. Steele & Hogg 2003; Boyce,
Irwin & Barker 2005), we know of only two studies that apply
these models to habitat selection. Gillies 

 

et al

 

. (2006) showed
that random intercepts accounted for unbalanced sampling
design and correlation among telemetry observations of grizzly
bears 

 

Ursus arctos

 

, dramatically improving model fit and
ecological insights. Using simulated data, Gillies 

 

et al

 

. (2006)
suggested functional responses could be accommodated with
mixed-effects models. Thomas, Johnson & Griffith (2006)
also developed hierarchical Bayesian mixed-effects resource
selection models for caribou 

 

Rangifer tarandus

 

. We know of
no empirical studies, however, that use mixed-effects models
for functional responses in resource selection, nor resource
selection of social species.

The objective of our study was to extend the application of
mixed-effect RSFs developed by Gillies 

 

et al

 

. (2006) to a more
complex example of conservation concern involving resource
selection by grey wolves 

 

Canis lupus

 

. Wolves are particularly
suited to the use of mixed-effects models to study resource
selection for two reasons. First, because they are a social
species living within packs, resource selection by individual
wolves within a pack may be expected to be more similar
within than between packs, suggesting a need for a multi-level
hierarchical model (e.g. Begg & Parides 2003). Second,
wolves have demonstrated wide variation in response to human
activity related to previous persecution by humans (Musiani
& Paquet 2004). Thus, a strong trade-off might be expected to
occur between selecting habitats close to human activity and
wolf survival, suggesting selection should change as a function
of the amount of human activity (Mysterud & Ims 1998). We
therefore hypothesized that wolves would show a functional
response in resource selection to human activity levels. Wolf
responses to human activity may be expected to differ seasonally
or diurnally (Theuerkauf  

 

et al

 

. 2003), so we also modelled
wolf resource selection separately by season and during night
and day.

 

Materials and methods

 

STUDY

 

 

 

S ITE

 

The study area is located on the eastern slopes of the Canadian
Rockies in Banff National Park (BNP, 51

 

°

 

30

 

″

 

N, 115

 

°

 

30

 

″

 

W) in
Alberta in a 7000-km

 

2

 

 area. The study occurred between 15 April
2002 and 15 October 2004. Human activity was concentrated in the
Bow valley and Ya Ha Tinda portions of the study area, and was
lowest in backcountry areas (Jevons 2001). Human-caused mortality
was higher for wolves straddling or outside the boundaries of BNP
than those within BNP, and during this study, 100% of radiocollared
wolf mortality was caused by trapping (73%) and hunting (27%)
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(M. Hebblewhite, unpublished data). On provincial lands, wolves
are legally harvested ~9 months of the year, and often illegally during
the other 3 months. More details of the study area can be found in
Hebblewhite & Merrill (2007).

 

WOLF

 

 

 

TELEMETRY

 

 

 

DATA

 

We modelled resource selection for five wolf packs: the Bow Valley
(BV), Cascade (CA), Ranch (RA), Red Deer (RD), and Wildhorse
(WH) packs. Wolves were captured using modified foot-hold traps
during summer and via helicopter netgunning during winter
(University of Alberta animal care protocol no. 353112; Parks Canada
MOU no. BNP-01-0064). We fitted wolves with GPS radiocollars
(GPS3300sw, LOTEK Ltd, Aurora, Ontario) that were programmed
with a 2-h relocation schedule. Fifty per cent of all locations were

 

<

 

 34 m, and 95% 

 

<

 

 113 m (Hebblewhite 2006), and we ignored
habitat-induced GPS-bias because bias was 

 

<

 

 10% (Hebblewhite,
Percy & Merrill 2007). We defined two wolf-based seasons: summer
(15 April–14 October) and winter (15 October–14 April). We desig-
nated locations as day or night based on averaged monthly sunrise
and sunset tables (http://www.hia-iha.nrc-cnrc.gc.ca/).

 

INCORPORATING

 

 

 

RANDOM

 

-

 

EFFECTS

 

 

 

IN

 

 

 

RESOURCE

 

 

 

SELECTION

 

 

 

FUNCTIONS

 

We built random effects into the used-availability RSF design
(Manly 

 

et al

 

. 2002) following Gillies 

 

et al

 

. (2006), wherein resource
covariates are compared at used and available locations using:

eqn 1

where 

 

W

 

(

 

x

 

) is the relative probability of use as a function of covariates

 

x

 

n

 

, and 

 

X

  

ββββ

 

 is the vector of the fixed-effect resource selection
coefficients 

 

b

 

1

 

x

 

1

 

 

 

+

 

 

 

b

 

2

 

x

 

2

 

 

 

+

 

 ... 

 

+

 

 

 

b

 

n

 

x

 

n

 

 estimated from fixed-effects
logistic regression (Manly 

 

et al

 

. 2002). The RSF is a relative probability
function, not a true probability function (i.e. a RSPF), because use
is compared with available locations (Manly 

 

et al

 

. 2002). For this
analysis, we considered wolf selection within the home-range, or at
the third order scale following Johnson’s (1980) hierarchy of scales
of selection. We chose this spatial scale because previous analyses
showed little variation at the second order scale of where wolves
select territories within the study area (M. Hebblewhite, unpublished
data). Therefore, availability of covariates was measured at the pack
level using one random location per square kilometre of seasonal
territory size, estimated from the 99th percentile kernel territory
boundary (Hebblewhite 2006). Random dates and times were
calculated for available points to designate points as day or night.
The same random points were used for each wolf within each pack
to keep availability constant within packs. For comparison with
mixed-effects models, we estimated fixed-effects RSF models using
equation 1 and call this the naïve RSF hereafter.

Building on equation 1, random intercepts were included to
accommodate the hierarchical structure of wolves within packs via
a mixed-effects GLMM with the logit link (Skrondal & Rabe-
Hesketh 2004). Next, we added a random coefficient for proximity
to high human use (see Habitat covariates section below) to test for
the functional response to human activity. The form for a generalized
three-level mixed-effects model for location 

 

i

 

, wolf 

 

j

 

, and pack 

 

k

 

,
with a random coefficient, is:

eqn 2

where 

 

β

 

0

 

 is the fixed-effect intercept,  are the random
variation in the intercept at the wolf and pack levels,  is the
variance around 

 

β

 

1

 

 among individuals (wolf-level) for covariate 

 

x

 

ijk

 

,
 is the variance around 

 

β

 

1

 

 arising from variation among
packs (pack-level) for covariate 

 

x

 

ijk

 

, 

 

X

  

ββββ

 

 is the vector of the fixed-effect
resource selection coefficients for covariate 

 

x

 

ijk

 

 (equation 1), and 

 

ε

 

ijk

 

is unexplained residual variation. Our notation for random effects
follows Rabe-Hesketh & Skrondal (2005, p. 236) and Gillies 

 

et al

 

.
(2006). Note in equation 2 that the full model has random coefficients
for both 

 

j

 

 and 

 

k

 

, but at present, only one random coefficient can
be accommodated in statistical packages (Rabe-Hesketh & Skrondal
2005). Thus, we only consider models that allow coefficient variation
in 

 

j

 

 only or 

 

k

 

. We use model fit and random effect size to determine
at which level (wolf, pack) the random coefficient for human activity
occurs (see model selection below).

Mixed-effect logit models were estimated with 

 



 

 8·0 (StataCorp
2003) using GLLAMM (www.gllamm.org; sample 

 



 

 code is
given in Appendix S1, Supplementary material). GLMMs can
also be estimated using other packages such as 

 



 

 (PROC GLIM-
MIX, http://support.sas.com/rnd/app/papers/glimmix.pdf), S-Plus,

 



 

 (using glme and glmmPQL, and glmmML, glmm, respectively,
Pinheiro & Bates 2000), and hierarchical Bayesian approaches such
as winBUGS (e.g. Thomas 

 

et al

 

. 2006). We opted to use the GLMM
approach using 

 



 

 8·0 rather than a Bayesian winBUGS
approach because of relative conceptual ease for ecologists familiar
with generalized linear models (GLM), and (at the time) because of
computational (convergence) difficulties with large GPS location
data sets in winBUGS. We derived maximum-likelihood estimates
(MLEs) in GLLAMM using adaptive quadrature (Rabe-Hesketh,
Skrondal & Pickles 2005) with 12 integration points. Computation
time is presently a limiting factor for any GLMM approach (

 

,

, 

 

); several of the models took 

 

>

 

 2 days to converge, but
advances in computational power and multiple-processing will
continue to improve efficiency. Our mixed-effect RSF models
made the following assumptions: (i) correlations within wolves
and packs were constant (see below), (ii) correlations between
wolves and packs were constant, and (iii) random effects were normally
distributed with a zero mean and unknown variance components
(Breslow & Clayton 1993; Skrondal & Rabe-Hesketh 2004). We
discuss the first two assumptions below, and tested the assumption
of normality for the distribution of random coefficients at the
wolf level (

 

n

 

 

 

=

 

 15) because a meaningful test with 

 

n

 

 

 

=

 

 5 packs
could not be conducted. While GLMMs are often robust to
violation of this assumption, Skrondal & Rabe-Hesketh (2004)
provide information on how to include non-normal random
effects in GLMMs.

A distinct advantage of mixed-effects models is the ability to provide
both 

 

marginal

 

 and 

 

conditional

 

 inferences (Breslow & Clayton 1993;
Skrondal & Rabe-Hesketh 2004). The 

 

marginal

 

 or 

 

population

 

-level
RSF model corresponds to the mean resource selection patterns
averaged across the hierarchically structured wolf population. For

 

population-level

 

 inference, the fixed-effects estimates from equation 2
are applied to equation 1 akin to typical RSF models (Manly 

 

et al

 

.
2002) following:

eqn 3

where equation 3 is a reduced form of equation 2 with no random
intercepts nor coefficients. We note that, although the intercept is
dropped by convention from equation 1 in RSF models (Manly

 

et al

 

. 2002), including a random intercept changes the 

 

β

 

 coefficients
(Breslow & Clayton 1993).

W( )  exp( )x = Xββ

Logit( )         

   ...    

( ) ( ) ( )

( )

y x

x
ijk jk

wolf
k
pack

jk
wolf

ijk

k
pack

ijk ijk

= + + +
+ + + +
β γ γ γ

γ ε
0 1

1 Xββ

γ γjk
wolf

k
pack( ) ( )  and

γ1 jk
wolf

ijkx( )

γ1k
pack

ijkx( )

∑( )      ...  x x xijk ijk= + + +β β1 2 Xββ

http://www.hia-iha.nrc-cnrc.gc.ca/
http://support.sas.com/rnd/app/papers/glimmix.pdf
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Conditional inferences are evaluated for either the individual
wolf, j, or individual pack, k. In this paper we focus on pack-level
conditional inferences, but direct readers to Appendix S2 in the
Supplementary material where wolf-level inferences are presented
for comparison. For pack-level inferences, equation 2 is solved using
conditional estimates for a specific pack, e.g. k = 1 following:

eqn 4

Note equation 4 is a reduced form of equation 2 for just pack-level
(not wolf-level) responses.

CORRELATION WITHIN AND BETWEEN GROUP-LEVELS

For three-level mixed-effects models, one can also estimate the: (i)
within pack correlation, (ii) correlation between wolves in a specific
pack, and (iii) correlation between locations within a pack holding
the effects of wolf constant (following Rabe-Hesketh & Skrondal
2005). This helps address assumptions about intra- and inter-pack
correlations, and also identifies the greatest source of variation and
how best to incorporate random effects into the model.

For the same wolf pack k, but different wolves j and j′, the within-
pack correlation is:

eqn 5

where ψ (pack) is the variance at the pack level, ψ (wolf ) is the variance at
the level of wolf, and π/3 is the variance in εijk (given a logit model).
For the same individual wolf j within pack k, the within-wolf corre-
lation is:

eqn 6

and finally, considering the correlation between locations in the
same pack for a given individual wolf

eqn 7

which can be thought of as a measure of how consistent resource
selection is at the individual wolf level. In all cases, the numerator is
the variance shared between both levels, and the denominator is the
total variance for equations 5 and 6, but without the variance due to
individual wolf in equation 7 because the effect of wolf is held
constant. In a proper three-level random effects model, the variances
of the random intercepts are positive > 0, and variance decomposes
such that ρ(wolf, pack) > ρ(pack). This is because telemetry locations
within a wolf are more similar than between different wolves within
the same wolf pack.

MODEL SELECTION

Model selection was conducted hierarchically (sensu Ten Have,
Kunselman & Tran 1999). First, we used AICc (Burnham & Anderson
1998) to identify the covariates of the top fixed-effect model
(equation 1) with their interactions from an a priori candidate
model list. Second, the top mixed-effect model structure was

selected using AICc by adding to the top-fixed effects: (i) a random
intercept for wolf, (ii) a random intercept for pack, (iii) a random inter-
cept for wolf and pack, (iv) two random intercepts and a random
coefficient for packs, and (v) same as (iv) but substituting a random
coefficient for wolf rather than pack The number of parameters k
was calculated as for fixed-effects models, plus one for each random
intercept, and two for each random coefficient for the variance and
covariance (Skrondal & Rabe-Hesketh 2004). We used conventional
AICc for model selection because we were interested in inferences to
the population of wolf packs. For conditional inferences within only
a pack/wolf, conditional AIC, or cAIC, is recommended by Vaida
& Blanchard (2005).

HABITAT COVARIATES

We considered the following six GIS covariates as fixed-effects in
wolf RSF models: landcover, elevation, slope, aspect, distance to
edge, and proximity to high human activity. Landcover type was
described from an existing landcover map for the study area derived
from Landsat (see Hebblewhite 2006) collapsed to nine landcover
types included as dummy variables: forested (the reference category
combined closed and moderate coniferous, mixed, and deciduous
types), open conifer, herbaceous, shrubs, deciduous, rock/ice/snow,
alpine, recent fires, and regenerating cutblocks. Bergmann et al.
(2006) found wolves selected areas closer to ‘hard’ habitat edges.
Therefore, we similarly defined ‘hard’ edges as any edge between
open (herbaceous, shrubs, deciduous, rock, alpine, fire) and closed-
canopied habitats (forested, open conifer) and between river/stream
edges, and calculated distance (km) to these edges. The three
topographic variables of elevation (m), slope (%), and aspect-class
(north, south, flat) were derived from a 30 m2 resolution Digital
Elevation Model (DEM).

Human activity on linear features influenced movements of
wolves elsewhere in the Canadian Rockies (Whittington, St Clair &
Mercer 2005). We used the human use digital atlas of the Central
Rockies Ecosystem (Jevons 2001) to quantify human activity along
all ~6000 km of combined linear features (including roads, trails,
and seismic exploration cutlines). Average density of linear features
was 0·81 km–2, but varied from > 12 km–2 near towns to < 0·5 km/km–2

in remote backcountry areas. We used Jevons’ (2001) quantita-
tive cut-off of 100 human-use events per month to classify human
activity on each linear feature as either high or low. Once classified,
proximity to linear features with high human activity was cal-
culated in kilometres. We screened against including collinear varia-
bles in RSF models using a r = 0·5 as a threshold cut-off value
(Hosmer & Lemeshow 2000).

MODELLING THE FUNCTIONAL RESPONSE

We tested for a functional response in wolf use of areas close to high
human activity using pack-specific random coefficients,  from
equation 4. Each wolf territory’s mean proximity to high human
activity was measured using zonal statistics++ in Hawth’s Analysis
Tools 3·19 (Beyer 2005) and ArcGIS 9·0 (ESRI). Then, for each
night/day and summer/winter model, we used a logarithmic function
(e.g. Mysterud & Ims 1998) to estimate the functional relationship
between the estimated random coefficient,  (as a dependent
variable), and each territory’s mean proximity to high human use,
Xk, the independent variable. This functional response was then used
to create maps of the relative probability of use by wolves using the
marginal and conditional models.

Wk k
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k
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MAPPING THE FUNCTIONAL RESPONSE

Mapping the marginal (population) RSF was straightforward using
GIS covariates and equation 3 for the top model (Manly et al. 2002).
However, mapping the conditional (pack-level) RSF was problematic
because any functional response observed is contingent on the scale
of investigation (Mysterud & Ims 1998). Therefore, we used a 16-km
radius moving window analysis based on radius of the mean seasonal
wolf territory size, 800 km2 (Hebblewhite 2006) to calculate the
average home range scale proximity to high human use, Xk. The
logarithmic functional response between  and Xk was then used
to create a GIS coverage making  spatially explicit. We then
substituted this spatially explicit  as the coefficient for
human activity into equation 3 for each landscape cell. Predicted
relative probabilities were rescaled between 0 and 1 for both the
marginal and conditional maps (Manly et al. 2002). All RSF mapping
were conducted using ArcGIS 9·2 raster calculator (ESRI Ltd 2004).

Results

We captured and outfitted 16 wolves from the five packs with
GPS collars, from which we obtained 17 575 GPS locations, or
an average of 541 GPS locations per season per wolf. Inclusion
of  any random effect, including just a random intercept,
dramatically improved fit over the naïve RSF model by
hundreds of ∆AIC units (Table 1). For all seasonal and time
of  day models, the top model was selected unequivocally,
and included random intercepts for wolf and pack, and a

pack-level random coefficient for proximity to high human use
(model  Table 1). The model with
random intercepts for pack and wolf but a random coefficient
at the wolf level (model ) failed to
converge during summer, but did converge during winter,
when it was the second-ranked model (Table 1). After the top
model, there was considerable variation in model ranking
among random intercept and random coefficient models,
and whether effects were stronger at the wolf or pack level
(Table 1). Comparison of the frequency of normalized indi-
vidual wolf  random coefficients to that expected assuming a
normal distribution (Fig. 1) supports the assumption of nor-
mality at the individual wolf  level (e.g. Steele & Hogg 2003),
and by inference, at the wolf pack level.

The habitat covariates influencing resource selection during
summer were consistent across seasonal and temporal
models. Wolves strongly avoided steeper slopes and strongly
selected for areas closer to ‘hard’ edges (Table 2). Wolves also
selected burned and alpine areas during summer, but selected
burns less and avoided alpine completely in the winter
(Table 2). Avoidance of higher elevations was mirrored by
stronger avoidance of rock during winter. Seasonal differences
between selection for herbaceous and shrubs were not as
different as temporal differences; wolves selected both more
at night than day (Table 2). Finally, open conifer and cutblocks
were selected during summer, but were as equally avoided as
forested habitats during winter (Table 2).

γ1k
pack( )

γ1k
pack( )

γ1k
pack( )

Table 1. Results of model selection for summer and winter mixed-effects resource selection models for wolves during day and night, showing
model structure, number of fixed (see Table 2) and random parameters (k), log-likelihood (LL), sample size (n), and ∆AIC. Model structures are:
Xββββ, fixed effects naïve logit model,  intercept for effect of wolf,  intercept for pack,  coefficient
for distance to high human use for individual wolves,  coefficient for proximity to high human use for wolf packs. Sample sizes
were n = 10 294, 7544, 4776, and 5268 for summer day, night, and winter day and night models, respectively. The top selected model is in bold

Model name Structure
Random 
k

Summer models 
(fixed k = 11)

Winter models 
(fixed k = 9)

LL ∆AIC LL ∆AIC

Daytime model
Naïve fixed effects logit Xββββ 0 –4518·4 861·81 –2727·6 1178·9
Random intercept for wolf 1 –4181·3 189·64 –2205·1 135·9
Random intercept for pack 1 –4405·2 637·49 –2442·8 611·4
Random intercept for wolf and pack 2 –4181·3 191·53 –2158·9 45·5
Random intercept for wolf, pack, 
and random coefficient for wolf

4 Failed to converge* –2143·2 18·2

Random intercept for wolf, pack, 
and random coefficient for pack

4 –4083·5 0·00 −−−−2134·1 0

Night model
Naïve fixed effects logit Xββββ 0 –3456·1 628·58 –2647·9 1184·5
Random intercept for wolf 1 –3251·4 221·19 –2125·1 140·9
Random intercept for pack 1 –3440·8 600·00 –2354·7 600·1
Random intercept for wolf and pack 2 –3252·0 224·28 –2060·3 13·3
Random intercept for wolf, pack, 
and random coefficient for wolf

4 Failed to converge* –2053·5 3·7

Random intercept for wolf, pack, 
and random coefficient for pack

4 –3137·9 0·00 –2051·6 0

*Convergence failure is thought to have occurred because for the same second-ranked winter model (Table 1) ρ(wolf, pack) < ρ(pack) 
(unpublished data), a biologically nonsensical result (Skrondal and Rabe-Hesketh 2004). See Appendix S2 for more details.
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During summer in the day, the correlation between all
wolves within packs, ρ(pack), and between wolves for a
specific pack, ρ(wolf, pack), were relatively similar, 0·62 and
0·69 respectively. Wolves within packs were less correlated

than with other packs at night in summer (0·15 vs. 0·55,
respectively; Table 2). This continued during the winter where
different packs were not correlated at all during either night
or day (ρ  =  0·11, 0·03) but when wolves within a specific pack
were highly correlated (ρ = 0·909, 0·907). Finally, locations
for a given wolf were more correlated during the day during
both seasons than at night (Table 2). As theoretically
expected, in all cases ρ(wolf, pack) > ρ(pack) (Skrondal &
Rabe-Hesketh 2004).

Marginal coefficients in Table 2 account for the hierarchical
data structure of wolves within packs, and were vastly different
from naïve-logit estimates (Fig. 2, see Hebblewhite 2006 for
detailed parameter estimates). The naïve-RSF model showed
no selection by wolves to human activity, whereas the
marginal coefficient revealed selection of areas close to human
activity (Fig. 2). In contrast, pack-level wolf  selectivity for
proximity to high human use changed dramatically between
packs within seasons (Fig. 2). The BV pack always selected
areas closer to human activity, as did the RA pack except
during daytime in the winter when they selected areas away
from human activity, while the WH pack followed an opposite

Fig. 1. Frequency distribution of (normalized) random coefficient
for individual wolf responses to human activity during daytime. The
overlaid curve gives the expected frequency under the assumption
that individual coefficients are distributed according to a normal dis-
tribution with mean and variance equal to the empirical distribution.

Table 2. Model structure and marginal parameters of the top seasonal (summer, winter) and temporal (night, day) three-level mixed-effects
model for resource selection estimated with GPS locations (level 1) with random intercepts for wolf (level 2) and pack levels (level 3), and a
random coefficient at the pack level for wolf response to proximity to high human use. *indicates significant at a conservative P = 0·05

Summer RSF model Winter RSF model

Day model Night model Day model Night model

N – level 1, 2, 3 10294, 11, 5 7544, 11, 5 4776, 13, 5 5268, 13, 5
Condition no.† 171·5 111·7 139·6 118·3

Fixed effects Day SE-day Night SE-night Day SE-day Night SE-night

Intercept 1·92 0·066* 1·54 0·283* 0·77 0·377* 1·14 0·402
Distance to high human use –0·15 0·014* –0·12 0·064 –0·22 0·128 −0·21 0·109
Distance to edge (km) –1·31 0·120* –1·52 0·147* –1·23 0·187* –1·38 0·204
Slope –0·08 0·003* –0·09 0·004* –0·07 0·005* –0·11 0·005
Burn 1·37 0·113* 1·13 0·131* 0·24 0·146 0·32 0·142
Alpine 0·53 0·114* 0·13 0·129 –0·48 0·23* –0·65 0·237
Shrub 0·99 0·131* 1·15 0·140* 0·11 0·147 0·93 0·159
Rock –0·46 0·089* −0·46 0·105* –1·43 0·152* –0·95 0·171
Oconif 0·52 0·100* 0·38 0·102* Dropped from final model¶
Herbaceous 0·54 0·161* 1·40 0·170* 0·72 0·189* 1·29 0·161
Cutblock 0·59 0·285* 1·36 0·390* Dropped from final model¶

Random effects Variances and covariances
0·238 0·023 0·930 0·344 9·200 3·370 9·870 3·660
2·083 0·177 0·343 0·013 1·260 0·603 0·331 0·375
0·269 0·039 0·085 0·031 0·459 0·296 0·200 0·173

COV‡ 0·268 0·041 –0·107 0·058 –0·069 0·072 –0·111 0·086
COR§ 0·358 – –0·622 – –0·091 –0·433

Intraclass correlations
ρ(pack) 0·618 0·148 0·109 0·029
ρ (wolf, pack) 0·689 0·549 0·909 0·907
ρ (pack | wolf) 0·665 0·247 0·546 0·240

†Condition number is an index of how well the model is identified. In binomial models, where model identification is difficult, values less than 
a few hundred are acceptable (Rabe-Hesketh and Skrondal 2005).
‡COV is the covariance between the random intercept and random coefficient at the pack level.
§COR is the correlation between the random intercept and random coefficient at the pack level.
¶Note these two landcover types were statistically insignificant during winter and were dropped from the final model, grouped with the intercept.
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pattern, selecting areas far from humans except during the
day in winter. Finally, both the CA and RD pack consistently
selected areas far from human activity (Fig. 2).

Wolf selection for human activity changed across availability
and time of day consistent with a functional response in
resource selection (Fig. 3, Table 3). As human activity increased
within territories, wolves became constrained to select areas
close to human activity, whereas packs occupying areas with
much lower human activity seemingly ignored human activity
(Fig. 3, Table 3). The functional response interacted with
time of day such that wolves in high human activity areas
moved closer to human activity during night-time, but
spatially avoided these areas during the day (Fig. 3, Table 3).

The final mixed-effects model for each season and time of
day was used to generate spatial predictions of the population
and pack-level wolf  RSF, shown in Fig. 4. Inclusion of the
random effect clearly illustrates differences between the
conditional and marginal models, especially surrounding
the Ya Ha Tinda Ranch (Fig. 4), and provides clear support
for the biological interpretation of Fig. 2.

Discussion

Including random effects in RSF models provided richer eco-
logical insights into the relationship between wolf resource
selection and human activity than fixed-effects models. The

Fig. 2. Conditional relative probabilities of use as a function of proximity to high human use seasonally and temporally for wolves in the eastern
slopes of Banff National Park and adjacent areas, 2002–2004. Conditional predictions from three-level (location–wolf–pack) mixed-effects
generalized linear mixed-model (GLMM) resource selection function (RSF), and are conditional on the specific pack, holding all other effects
constant. The marginal, or population-level prediction, and prediction from the naïve logit, which ignores the hierarchical structure of the data,
are shown for comparison.

Table 3. Wolf–human use functional response model parameter estimates between the selectivity coefficient  and seasonal wolf home
range-scale proximity to high human use (x1ijk). Nonlinear model form  Model estimated using nonlinear least
squares, and *indicates significant at a conservative P = 0·10 because of small sample size

Model β1 SE β0 SE F1, 4 P R2-Adj

Summer day 0·2 0·085* –0·232 0·107* 5·62 0·095 0·54
Summer night 0·291 0·097* –0·356 0·17* 8·84 0·058 0·66
Winter day 0·295 0·13* –0·3562 0·17 4·77 0·110 0·45
Winter night 0·49 0·19* –0·722 0·245* 6·33 0·085 0·57

( )( )γ1 jk
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pack
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effects of the fixed-covariates, namely wolf avoidance of steep
slopes, selective use of hard edges, and general selection for
areas supporting higher ungulate forage biomass, were con-
sistent with previous studies of wolves in mountainous terrain
(Whittington et al. 2005; Bergmann et al. 2006). The real
ecological insights of mixed effects come from understanding
diurnal variation between and within wolf packs with respect
to human activity. Individual wolves responded to human
activity more similarly within than between wolf packs. Wolf
packs that occurred far from high human activity responded
randomly to human activity at all times of the day. As human
activity increased, wolf resource selection followed a functional
response whereby packs were constrained to select areas closer

to human activity at the home-range scale. At high human
activity levels, however, this functional response diverged between
night and day, revealing spatio-temporal avoidance of human
activity during daytime, when human activity is the highest.

This study also firmly demonstrates that random effects are
a fundamental property of the experimental design (Benning-
ton & Thayne 1994) and crucial to model fit. Models without
a random intercept were thousands of times less likely to be
the best model. Furthermore, without random effects,
researchers can really only make valid inferences to the sampled
units, not to the population, akin to their interpretation in
 (Bennington & Thayne 1994). Failure to include
mixed-effects has undoubtedly hindered previous studies
which often pooled and/or discarded data to estimate one
fixed-effects logit to reduce autocorrelation (Mladenoff et al.
1995). Yet our study demonstrated the limitations of averag-
ing models because the population effects were not equivalent
to the pack-level responses or to the naïve logit effects. Thus,
estimating one RSF model per pack and averaging coeffi-
cients is not necessarily equivalent to the marginal estimate,
and would not allow true population-level inferences (Skrondal
& Rabe-Hesketh 2004). While random effects may not be
useful for some situations, we argue that argue that random
effects should be considered as a priori aspects of experimental
design for resource selection studies, especially for social species.

Mixed-RSF models will also open research into the con-
sequences of individual behaviour to population dynamics.
For example, the wolf (#77) that selected areas closest to human
activity (Table S1, Supplementary material) was shot by a
human. With enough mortality data, researchers could link
resource selection to the fitness consequences (McLoughlin
et al. 2005). This approach would allow a landscape to be
divided into demographic categories according the frame-
work of source-sink dynamics and attractive sinks (Nielsen,
Stenhouse & Boyce 2006). For example, given the trade-off
between selection for high productivity areas outside the park
and areas far from human activity, wolf  habitat could be
divided into source habitat (e.g. the Red Deer river inside the
park), poor-quality habitat (high elevation nonproductive
sites), and attractive sinks (e.g. the Ya Ha Tinda ranch, Fig. 4)
where productivity and ungulate biomass is high, but where
survival is reduced because of human activity (Nielsen et al.
2006). Partitioning by age- and sex-class may also provide
insight into potential life-history consequences of resource
selection (Steele & Hogg 2003). For example, breeding female
wolves demonstrated the most ‘conservative’ (strongest)
human avoidance behaviour of all age–sex classes (Table S1,
Supplementary material); such insights would not be possible
from naïve logistic modelling approaches.

Even a cursory review of  previous wolf–human studies
supports our interpretation of the overriding importance of
wolf functional responses to human activity. Wolves selected
seismic lines in the low-human density boreal forests of Alberta
(James & Stuart-Smith 2000), avoided paved but selected dirt
roads with moderate human activity in Italy (Ciucci, Masi &
Boitani 2003), avoided areas of higher human activity during
the day in Poland (Theuerkauf et al. 2003), and selected to be

Fig. 3. Functional response in resource selection by wolves as a
function of changing seasonal home range proximity to high human
use across wolf packs along the eastern slopes of Banff National
Park. The functional response of wolves to human activity interacts
with time of day only in areas close to high human activity. The
available proximity to high human use was calculated at the seasonal
home range level during winter and summer. Conditional selection
coefficients for wolf packs during day and night periods were
estimated from a three-level (location–wolf–pack) mixed-effects
generalized linear mixed-model (GLMM) resource selection
function (RSF). Acronyms of wolf packs are given in the text.
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close to areas of low human activity but far from high human
activity areas in the Canadian Rockies (Whittington et al.
2005). This variation among studies suggests wolves respond
more to the level of human activity rather than density of
roads or trails, avoiding human activity only at high levels
(Whittington et al. 2005). We found quantitative support for
this hypothesis as revealed by wolves’ functional response to
gradients in human activity. Given the evolutionary and
recent history of human persecution of wolves by humans
(Musiani & Paquet 2004), the functional response of wolves
to human activity is surely adaptive. Wolf avoidance of
human activity also has important trophic implications
because ungulates may increase in areas of  high human
activity because of reduced wolf use, with resultant trophic
cascades to plants (Hebblewhite et al. 2005).

Our approach provides a unifying framework to understand
the contradictory literature on wolf–human relationships,
and a conceptual approach to model wildlife–human
relationships for other sensitive wildlife species. Inclusion of a

random coefficient in RSF models is advised where individual
animals exhibit variable selection for a resource (e.g. Gillies
et al. 2006), or may be expected to demonstrate a functional
response in resource selection for a limiting resource
(Mysterud & Ims 1998). Where a functional response does
not occur, inclusion of  random intercepts is still advisable
for improving model fit and estimates, especially for social
species. New advances in resource selection modelling make
inclusion of mixed-effects models possible in approaches for
estimating resource selection probability functions (Lele &
Keim 2006) and logistic discriminant functions (Johnson
et al. 2006). We hope the growing evidence demonstrating
clear benefits of modelling resource selection with mixed-
effects models will convince ecologists of their utility.
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